Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes.

نویسندگان

  • Matthew Spite
  • Shahid P Baba
  • Yonis Ahmed
  • Oleg A Barski
  • Kanchan Nijhawan
  • J Mark Petrash
  • Aruni Bhatnagar
  • Sanjay Srivastava
چکیده

Phospholipid oxidation generates several bioactive aldehydes that remain esterified to the glycerol backbone ('core' aldehydes). These aldehydes induce endothelial cells to produce monocyte chemotactic factors and enhance monocyte-endothelium adhesion. They also serve as ligands of scavenger receptors for the uptake of oxidized lipoproteins or apoptotic cells. The biochemical pathways involved in phospholipid aldehyde metabolism, however, remain largely unknown. In the present study, we have examined the efficacy of the three mammalian AKR (aldo-keto reductase) families in catalysing the reduction of phospholipid aldehydes. The model phospholipid aldehyde POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine] was efficiently reduced by members of the AKR1, but not by the AKR6 or the ARK7 family. In the AKR1 family, POVPC reductase activity was limited to AKR1A and B. No significant activity was observed with AKR1C enzymes. Among the active proteins, human AR (aldose reductase) (AKR1B1) showed the highest catalytic activity. The catalytic efficiency of human small intestinal AR (AKR1B10) was comparable with the murine AKR1B proteins 1B3 and 1B8. Among the murine proteins AKR1A4 and AKR1B7 showed appreciably lower catalytic activity as compared with 1B3 and 1B8. The human AKRs, 1B1 and 1B10, and the murine proteins, 1B3 and 1B8, also reduced C-7 and C-9 sn-2 aldehydes as well as POVPE [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphoethanolamine]. AKR1A4, B1, B7 and B8 catalysed the reduction of aldehydes generated in oxidized C(16:0-20:4) phosphatidylcholine with acyl, plasmenyl or alkyl linkage at the sn-1 position or C(16:0-20:4) phosphatidylglycerol or phosphatidic acid. AKR1B1 displayed the highest activity with phosphatidic acids; AKR1A4 was more efficient with long-chain aldehydes such as 5-hydroxy-8-oxo-6-octenoyl derivatives, whereas AKR1B8 preferred phosphatidylglycerol. These results suggest that proteins of the AKR1A and B families are efficient phospholipid aldehyde reductases, with non-overlapping substrate specificity, and may be involved in tissue-specific metabolism of endogenous or dietary phospholipid aldehydes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative anatomy of the aldo-keto reductase superfamily.

The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/...

متن کامل

Cloning and characterization of four rabbit aldo-keto reductases featuring broad substrate specificity for xenobiotic and endogenous carbonyl compounds: relationship with multiple forms of drug ketone reductases.

Multiple forms of reductases for several drug ketones were isolated from rabbit liver, but their interrelationship and physiologic roles remain unknown. We isolated cDNAs for four aldo-keto reductases (AKR1C30, AKR1C31, AKR1C32, and AKR1C33), which share high amino acid sequence identity with the partial sequences of two rabbit naloxone reductases. The four recombinant enzymes reduced a variety...

متن کامل

The high resolution crystal structure of rat liver AKR7A1: understanding the substrate specificites of the AKR7 family.

The structure of the rat liver aflatoxin dialdehyde reductase (AKR7A1) has been solved to 1.38 A resolution. The crystal structure reveals details of the ternary complex as one subunit of the dimer contains NADP+ and the inhibitor citrate. The underlying catalytic mechanism appears similar to other aldo-keto reductases (AKR), whilst the substrate-binding pocket contains several positively charg...

متن کامل

Crystallographic analysis of a novel aldo-keto reductase from Thermotoga maritima in complex with NADP⁺.

Aldo-keto reductases (AKRs) are a superfamily of NAD(P)H-dependent oxidoreductases that catalyse the asymmetric reduction of aldehydes and ketones to chiral alcohols in various organisms. The novel aldo-keto reductase Tm1743 from Thermotoga maritima was identified to have a broad substrate specificity and high thermostability, serving as an important enzyme in biocatalysis and fine-chemical syn...

متن کامل

Regulation of Aldo–Keto Reductases in Human Diseases

The aldo-keto reductases (AKRs) are a superfamily of NAD(P)H-linked oxidoreductases, which reduce aldehydes and ketones to their respective primary and secondary alcohols. AKR enzymes are increasingly being recognized to play an important role in the transformation and detoxification of aldehydes and ketones generated during drug detoxification and xenobiotic metabolism. Many transcription fact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 405 1  شماره 

صفحات  -

تاریخ انتشار 2007